Survival rates are often used by doctors as a standard way of discussing a person’s prognosis (outlook). Some parents may want to know the survival statistics for children in similar situations, while others may not find the numbers helpful, or may even not want to know them. If you do not want to read about the survival statistics for brain and spinal cord tumors given in the next few paragraphs, skip to the next section.
The 5-year survival rate refers to the percentage of children who live at least 5 years after their cancer is diagnosed. Of course, many children live much longer than 5 years (and many are cured).
To get 5-year survival rates, doctors have to look at children who were treated at least 5 years ago. Improvements in treatment since then might result in a better outlook for children now being diagnosed with brain tumors.
The numbers below come from the Central Brain Tumor Registry of the United States (CBTRUS) and are based on children aged 19 or younger who were treated between 1995 and 2010. There are some important points to note about these numbers:
Type of Tumor |
5-Year Survival Rate |
Pilocytic astrocytoma |
About 95% |
Fibrillary (diffuse) astrocytoma |
About 80% to 85% |
Anaplastic astrocytoma |
About 30% |
Glioblastoma |
About 20% |
Oligodendroglioma |
About 90% to 95% |
Ependymoma/anaplastic ependymoma |
About 75% |
PNETs (includes medulloblastoma and pineoblastoma) |
About 60% to 65% |
Survival rates are often based on previous outcomes of large numbers of children who had the disease, but they can’t predict what will happen in any particular child’s case. Knowing the type of a child’s brain tumor is important in estimating their outlook. But many other factors can also affect a child’s outlook, such as the location and extent of the tumor and how well it responds to treatment. Even taking these other factors into account, survival rates are at best rough estimates. Your child’s doctor knows your child’s situation and is your best source of information on this topic.
There is always research going on in the area of brain and spinal cord tumors. Scientists are looking for causes and ways to prevent them, and doctors are working to improve treatments.
Researchers continue to look for the gene changes inside cells that result in brain and spinal cord tumors. The hope is that learning more about these gene changes may lead to better ways to treat these tumors.
For example, researchers have found that medulloblastomas can be divided into 4 main types, based on the different gene changes in the tumor cells. Some of these tumor types have a better outlook than others. Doctors are now learning how to use this information to help decide which children might need more or less intensive treatment.
More recently, researchers have identified some of the specific gene changes found in each type of medulloblastoma that might help the tumor cells grow. Some of these gene changes can be targeted with new types of drugs, which are now being tested in clinical trials. In the future, doctors may be able to develop other drugs that specifically target these gene changes.
Recent advances have made surgery for brain tumors much safer and more successful. Some of these newer techniques include:
Several newer types of radiation therapy now let doctors aim radiation more precisely at the tumor, which helps spare normal brain tissue from getting too much radiation. Newer techniques such as stereotactic radiosurgery, 3-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and proton beam therapy are described in the section “Radiation therapy.”
The brain is very sensitive to radiation, which can lead to side effects if normal brain tissue receives a large dose, especially if the child is very young. Clinical trials have shown that in some situations, using chemotherapy can let doctors use lower doses of radiation therapy without lowering the chance that treatment will be effective. Doctors are now trying to determine if even lower doses of radiation can be used and still give the same results.
New approaches may help make chemotherapy (chemo) more useful against brain and spinal cord tumors.
In some children and infants with brain tumors, chemo is given right after surgery to either delay radiation therapy (particularly in infants) or to decrease the radiation dose needed to treat the tumor. This is known as adjuvant chemotherapy. Some studies are looking at whether giving prolonged chemo can help avoid the need for radiation therapy at all in certain cases.
One of the main factors that limits the doses of chemo that can be given safely is its effects on the bone marrow, where new blood cells are normally made. A stem cell transplant allows higher doses of chemo to be given than would normally be possible. First, blood stem cells are removed from either the child’s blood or the bone marrow and are stored in a deep freeze. The child is then treated with very high doses of chemo. The blood stem cells are then thawed and infused back into the body, where they settle in the bone marrow and start making new blood cells.
Although some children with certain brain or spinal cord tumors (such as medulloblastomas) have responded well to this very intensive treatment, it can have serious side effects, and it is not yet known if it is effective enough to become standard. For now, most doctors consider this treatment experimental for brain and spinal tumors. Clinical trials are being done to determine how useful it is.
Many chemo drugs are limited in their effectiveness because the tightly controlled openings in the brain capillaries, sometimes referred to as the blood-brain barrier, prevents them from getting from the bloodstream to some parts of the brain tumor. Researchers are now trying to modify some of these drugs by coating them with tiny layers of fat (liposomes) or attaching them to molecules that normally cross the blood-brain barrier, to help them work better. This is an area of active research.
Some newer approaches might help doctors get chemo directly to brain and spinal cord tumors.
For example, in one method called convection enhanced delivery, small tubes are placed into the tumor in the brain through a small hole in the skull during surgery. The tubing extends through the scalp and is connected to an infusion pump, through which chemo drugs can be given. This can be done for hours or days and might be repeated more than once, depending on the drug used. This technique can also be used to get other, newer types of drugs into the tumor. This is still an investigational method, and studies are continuing.
Researchers are also testing some newer approaches to treatment that may help doctors target tumors more precisely. The hope is to develop more effective treatments that cause fewer side effects. Although these treatment approaches are promising, most are still experimental at this time and are only available through clinical trials.
As researchers have learned more about the gene changes in tumor cells that help them grow, they have developed newer drugs that target these changes. These targeted drugs work differently from standard chemo drugs.
One example of such a targeted drug is everolimus (Afinitor), which may shrink or slow the growth of subependymal giant cell astrocytomas (SEGAs) that can’t be removed with surgery (see “Targeted therapy for brain and spinal cord tumors in children”).
Some types of medulloblastomas tend to have mutations (changes) in genes that are part of a cell signaling route called the hedgehog pathway. The hedgehog pathway is crucial for the development of the embryo and fetus, but it can be overactive in some medulloblastoma cells. Drugs that target proteins in this pathway are now being tested against medulloblastoma in clinical trials.
Many other targeted drugs are already being used to treat other types of cancer, and some are being studied to see if they will work for brain tumors as well.
Tumors have to create new blood vessels (a process called angiogenesis) to keep their cells nourished. New drugs that attack these blood vessels are used to help treat some cancers, including some brain tumors in adults. Several drugs that impair blood vessel growth are now being studied for use against brain tumors in children.
Some drugs increase the oxygen content in the tumor, which makes tumor cells more likely to be killed by radiation therapy if the drugs are given before treatment. Studies are now looking to see if this affects treatment outcomes.
The goal of immunotherapy is to make the body’s own immune system fight the tumor.
Several types of vaccines are being developed against brain tumor cells. Unlike vaccines against infectious diseases, these vaccines are meant to help treat the disease instead of prevent it. The goal of the vaccines is to stimulate the body’s immune system to attack the brain tumor cells.
Early study results of some of these vaccines have shown promise, but more research is needed to determine how effective they are. At this time, brain tumor vaccines are available only through clinical trials.
Other types of drugs that affect the immune system, such as lenalidomide, are also being studied.
Researchers have done a great deal of lab work with viruses that reproduce only within brain tumor cells and then cause those cells to die, while leaving normal cells alone. Research using these viruses in humans with brain tumors is still in very early stages.
Brain and spinal cord tumors are usually found because of signs or symptoms a child is having. If a tumor is suspected, tests will be needed to confirm the diagnosis.
If your child has symptoms that suggest a brain or spinal cord tumor, the doctor will get a complete medical history, focusing on the symptoms and when they began. The doctor will also do a neurologic exam to check your child’s brain and spinal cord function, if possible. Depending on the child’s age, the exam may test reflexes, sensation, muscle strength, vision, eye and mouth movement, coordination, balance, alertness, and other functions.
If the results are abnormal, your child’s doctor may refer you to a neurologist (a doctor specializing in medical treatment of nervous system diseases) or a neurosurgeon (a surgeon specializing in nervous system diseases), who will do a more detailed exam and might order other tests.
Your child’s doctors may order one or more imaging tests. These tests use x-rays, strong magnets, or radioactive substances to create pictures of internal organs such as the brain and spinal cord. The pictures may be looked at by doctors specializing in this field (neurosurgeons, neurologists, and neuroradiologists) as well as by your child’s primary care doctor.
Magnetic resonance imaging (MRI) and computed tomography (CT) scans are used most often for brain diseases. These scans will show a brain or spinal cord tumor, if one is present, in almost all cases. Doctors can often also get an idea about what type of tumor it might be, based on how it looks on the scan and where it is in the brain (or spinal cord).
MRI scans are very good for looking at the brain and spinal cord and are considered the best way to look for tumors in these areas. MRI images are usually more detailed than those from CT scans (described below). But they do not image the bones of the skull as well as CT scans and therefore might not show the effects of tumors on the skull.
MRI scans create detailed images using radio waves and strong magnets instead of x-rays, so they do not expose the child to radiation. A contrast material called gadolinium may be injected into a vein before the scan to help see details better.
MRI scans can take a long time – often up to an hour. Your child may have to lie on a table that slides inside a narrow tube, which is confining and can be distressing. The test also requires a person to stay still for several minutes at a time. Some children might need medicine to help them relax or even be asleep during the test. Open MRI machines may be another option, though they might result in less detailed images. The MRI machine makes loud buzzing and clicking noises that your child may find disturbing. Some places provide headphones or earplugs to help block this noise out.
Magnetic resonance angiography (MRA): This special form of MRI may be done to look at the blood vessels in the brain. This can be very useful before surgery to help the surgeon plan an operation.
Magnetic resonance spectroscopy (MRS): This test is like an MRI, except it measures the radio wave interactions with different chemicals in the brain. MRS highlights some features of brain tumors that may not be seen clearly with MRI. It creates graph-like results called spectra (but crude images can also be created). This might give clues to the type of tumor, but in most cases a biopsy of the tumor is still needed to get an accurate diagnosis. MRS can also be used after treatment to help determine if an area that still looks abnormal on another test is remaining tumor or if it is more likely to be scar tissue.
Magnetic resonance perfusion: For this test, also known as perfusion MRI, a contrast dye is injected quickly into a vein. A special type of MR image is then obtained to look at the amount of blood going through different parts of the brain and tumor. Tumors often have a bigger blood supply than normal areas of the brain. A faster growing tumor may need more blood.
Perfusion MRI can give doctors an idea of the best place to take a biopsy. It can also be used after treatment to help determine if an area that still looks abnormal is remaining tumor or if it is more likely to be scar tissue.
Functional MRI (fMRI): This newer type of MRI looks for tiny blood flow changes in an active part of the brain. It can be used to determine what part of the brain handles a function such as speech, thought, sensation, or movement. Doctors can use this to determine which parts of the brain to avoid when planning surgery or radiation therapy.
This test is similar to a standard MRI, except that your child will be asked to perform specific tasks (such as answering simple questions or moving their fingers) while the scans are being done.
The CT scan uses x-rays to produce detailed cross-sectional images of your child’s brain and spinal cord. Instead of taking one picture, like a regular x-ray, a CT scanner takes many pictures as it rotates around your child while he or she lies on a table. A computer then combines these pictures into images of slices of the body. Unlike a regular x-ray, a CT scan creates detailed images of the soft tissues in the body.
For brain and spinal cord tumors, CT scans are not used as often as MRI scans, which give slightly more detailed images and do not use radiation. Still, there are instances where CT scans may have advantages over MRI scans:
Before the scan, your child may get an injection of a contrast dye through an IV (intravenous) line. This helps better outline any tumors that are present. The contrast contains iodine and may cause some flushing (a feeling of warmth, especially in the face). Some people are allergic to the dye and get hives. Rarely, more serious reactions like trouble breathing or low blood pressure can occur. Be sure to tell the doctor if your child has any allergies or has ever had a reaction to any contrast material used for an imaging test.
CT angiography (CTA): For this test, your child gets an injection of contrast material through an IV line while he or she is in the CT scanner. The scan creates detailed images of the blood vessels in the brain, which can help doctors plan surgery. CT angiography can provide better details of the blood vessels in and around a tumor than MR angiography in some cases.
For this test, a radioactive substance (usually a type of sugar known as FDG) is injected into the blood. The amount of radioactivity used is very low and passes out of the body within a day or so. Because tumor cells in the body are growing quickly, they absorb larger amounts of the sugar than most other cells. After about an hour, your child is moved onto a table in the PET scanner. He or she will lie on the table for about 30 minutes while a special camera creates a picture of areas of radioactivity in the body. If your child is not able to stay still for the test, this might require sedation.
The PET scan image is not as detailed as a CT or MRI scan, but it can provide helpful information about whether abnormal areas seen on other tests (such as MRIs) are likely to be tumors or not.
This test is also useful after treatment to help determine if an area that still looks abnormal on an MRI scan is remaining tumor or if it is more likely to be scar tissue. Any remaining tumor will show up on the PET scan, while scar tissue will not.
For this test, a special dye is injected into blood vessels near the tumor, and then the area is viewed with x-rays. This helps doctors look at a tumor’s blood supply. This test is not done much for brain or spinal cord tumors anymore, as it has largely been replaced by magnetic resonance angiography (MRA) or computerized tomographic angiography (CTA).
Imaging tests such as MRI and CT scans may show that a child has a brain or spinal cord tumor. But usually the type of tumor can be determined only by removing a sample of it, which is called a biopsy. A biopsy may be done as a procedure on its own for diagnosis, or it may be part of surgery to treat the tumor.
The biopsy samples are looked at under a microscope by a pathologist (a doctor specializing in diagnosis of diseases by lab tests). Sometimes it might need to be looked at by a neuropathologist, a pathologist who specializes in nervous system diseases. The pathologist determines if the tumor is benign or malignant (cancerous) and exactly what type of tumor it is.
In some cases (such as for many astrocytomas or brain stem gliomas), it may not be necessary or possible to biopsy the tumor safely, so the diagnosis is made based only on how the tumor looks on imaging tests.
Biopsies can be done in different ways.
This type of biopsy may be used if imaging tests show surgery to remove the tumor might be too risky (such as with some tumors in vital areas or deep within the brain) but a sample is still needed to make a diagnosis.
Depending on the situation, the biopsy may be done with the child awake or under general anesthesia (asleep). If the child is awake, the neurosurgeon injects a local anesthetic into areas of skin over the skull to numb them. (The skull and brain itself do not feel pain.)
A rigid frame may then be attached onto the child’s head. This helps make sure the surgeon will target the tumor precisely. A small cut is made in the scalp, and a small hole is drilled in the skull. An MRI or CT scan is used along with the frame to help the neurosurgeon guide a hollow needle into the tumor to remove small pieces of tissue.
Another approach is to get an MRI or CT scan, use scalp markers or facial and scalp contours to create a map of the inside of the head, and then use an image-guidance system to direct the needle into the tumor. This still requires making an incision and drilling a small hole into the skull.
The biopsy samples are then looked at under a microscope by a pathologist. The doctor can usually tell exactly what type of tumor it is. This helps determine the best course of treatment and the prognosis (outlook).
If imaging tests show the tumor can be treated with surgery, the neurosurgeon may not do a needle biopsy. Instead, he or she may do an operation called a craniotomy (described in the Surgery section) to remove all or most of the tumor. (Removing most of the tumor is known as debulking.)
Small samples of the tumor are looked at right away by the pathologist while the child is still in the operating room, to get a preliminary diagnosis. This can help guide treatment, including whether further surgery should be done at that time. A final diagnosis is made a within a few days in most cases.
You can read more about the kinds of tests that are done on biopsy or tissue samples in Testing Biopsy and Cytology Specimens for Cancer.
This test is used to look for cancer cells or chemicals released by tumors in the cerebrospinal fluid (CSF), which is the liquid that bathes the brain and spinal cord. For this test, the doctor first numbs an area in the lower part of the back over the spine. The doctor may also recommend that the child be given something to make them sleep so the lumbar puncture can be done more easily and safely. A small, hollow needle is then placed between the bones of the spine to withdraw some of the fluid.
The fluid is looked at under a microscope for cancer cells. The CSF can also be tested for certain substances released by some germ cell tumors.
Lumbar punctures are often used if a tumor has already been diagnosed as a type (such as a medulloblastoma) that can commonly spread through the CSF. Information from the spinal tap can influence treatment.
Because some tumors (especially medulloblastomas) can spread beyond the nervous system, in some instances the doctor may recommend looking at cells in your child’s bone marrow (the soft, inner part of certain bones) to see if tumor cells have spread there.
The bone marrow aspiration and biopsy are often done at the same time. The samples are usually taken from the back of the pelvic (hip) bone, but in some cases they may be taken from other bones.
In bone marrow aspiration, the skin over the hip and the surface of the bone is cleaned and then numbed with local anesthetic. In most cases, the child is also given other medicines to make them drowsy or even asleep during the procedure. A thin, hollow needle is then inserted into the bone, and a syringe is used to suck out (aspirate) a small amount of liquid bone marrow.
A bone marrow biopsy is usually done just after the aspiration. A small piece of bone and marrow is removed with a slightly larger needle that is pushed down into the bone. Once the biopsy is done, pressure is applied to the site to help stop any bleeding
The specimens are then looked at under a microscope for tumor cells.
These lab tests are rarely used to diagnose brain and spinal cord tumors, but if your child has been sick for some time they may be done to check how well the liver, kidneys, and some other organs are working. This is especially important before any planned surgery.
If your child is getting chemotherapy, blood tests will be done routinely to check blood counts and to see if the treatment is affecting other parts of the body.
The stage of a cancer is a measure of how far it has spread. The extent of spread is based on the results of imaging tests (see How are brain and spinal cord tumors in children diagnosed?) and any other tests that have been done.
For most types of cancer, the stage is one of the most important factors in selecting treatment options and in determining the outlook (prognosis). But tumors of the brain and spinal cord differ in some important ways from cancers in other parts of the body. One of the main reasons other cancers are dangerous is that they can spread throughout the body. Tumors starting in the brain or spinal cord can spread to other parts of the central nervous system, but they almost never spread to other organs. These tumors are dangerous because when they grow, it can interfere with essential functions of the brain.
Because most tumors in the brain or spinal cord do not usually spread, they are not formally staged. Some of the most important factors that determine your child’s prognosis include:
A staging system is a standard way for the cancer care team to describe the extent of tumor spread. Formal staging systems have been proposed for some childhood brain tumors.
For example, many clinical trials for treating medulloblastoma use a system that places children into either standard-risk or high-risk groups. Children are placed in the high-risk group if any of these apply:
Doctors are still refining this system to make it as accurate as possible.
Recent research has shown that medulloblastomas can be divided into 4 types, based on the major gene changes found in the cancer cells. Each type of medulloblastoma has a different outlook, so doctors may be able to use this to better tailor the treatment each child gets (see What’s new in research and treatment for brain tumors in children?).
Signs and symptoms from brain and spinal cord tumors might occur gradually and become worse over time, or they can happen suddenly, such as with a seizure.
Tumors in any part of the brain might raise the pressure inside the skull (known as intracranial pressure). This can be caused by growth of the tumor, swelling in the brain, or blocked flow of cerebrospinal fluid. Increased pressure can lead to general symptoms such as:
Headaches that get worse over time are a common symptom of brain tumors. But not all brain tumors cause headaches, and most headaches are not caused by tumors.
In some children, seizures are the first symptom of a brain tumor. Most seizures in children are not caused by brain tumors, but if your child has a seizure, your child’s doctor may refer you to a neurologist (a doctor who specializes in brain and nervous system problems) to make sure it wasn’t caused by a brain tumor or other serious disease.
In the first few years of life, other symptoms of tumors can include irritability, loss of appetite, developmental delay, and a drop in intellectual and physical abilities. In very young children who can’t complain of symptoms, a parent may notice an increase in head size, sometimes along with bulging of the soft spots of the skull (fontanelles). This happens because the bones of the skull haven’t grown together yet, and increased pressure from a tumor can push them apart.
In the school-aged child, other general symptoms of tumors can include poor school performance, fatigue, and personality changes.
If the child can cooperate, the doctor can sometimes tell if pressure inside the skull is increased by looking inside the child’s eyes for swelling of the optic nerve (known as papilledema).
Tumors in different parts of the brain or spinal cord can cause different symptoms. But these symptoms can be caused by any disease in that particular location – they don’t always mean a child has a brain or spinal cord tumor.
Brain and spinal cord tumors often cause problems with the specific functions of the region they develop in. For example:
Having one or more of the symptoms above does not mean that your child definitely has a brain or spinal cord tumor. All of these symptoms can have other causes. Still, if your child has any of these symptoms, especially if they don’t go away or get worse over time, see your child’s doctor so that the cause can be found and treated, if needed.
As much as you might want to put the experience behind you once treatment is completed, it is very important to keep good records of your child’s medical care during this time. This can be very helpful later on as your child sees new doctors. Gathering the details soon after treatment may be easier than trying to get them at some point in the future. There are certain pieces of information that your child’s doctors should have, even after the child has become an adult. These include:
It is also very important to keep your child’s health insurance. Tests and doctor visits cost a lot, and even though no one wants to think of the tumor coming back, this could happen.
Brain and spinal cord tumors are the second most common cancers in children (after leukemia). They account for about 1 out of 4 childhood cancers. More than 4,000 central nervous system tumors are diagnosed each year in children and teens. The incidence rate (number of tumors per 100,000 children) has not changed much in recent years.
Boys develop these tumors slightly more often than girls.
About 3 out of 4 children with brain tumors (all types combined) survive at least 5 years after being diagnosed. The outlook can vary a great deal based on the type of tumor, where it is, and other factors. For survival information on some particular tumor types, see “ Survival rates for selected brain and spinal cord tumors.”
Visit the American Cancer Society’s Cancer Statistics Center for more key statistics.
A risk factor is anything that affects a person’s chance of getting a disease such as a brain or spinal cord tumor. Different types of cancer have different risk factors.
Lifestyle-related risk factors such as diet, body weight, physical activity, and tobacco use play a major role in many adult cancers. But these factors usually take many years to influence cancer risk, and they are not thought to play much of a role in childhood cancers, including brain tumors.
Very few risk factors have been found for brain and spinal cord tumors. There is no clear cause for most of these tumors.
The only well-established environmental risk factor for brain tumors is radiation exposure to the head, which most often comes from the treatment of other conditions.
For example, before the risks of radiation were well known (more than 50 years ago), children with ringworm of the scalp (a fungal infection) often received low-dose radiation therapy. This was later found to increase their risk of brain tumors as they got older.
Today, most radiation-induced brain tumors are caused by radiation given to the head to treat other cancers, such as leukemia. These brain tumors usually develop around 10 to 15 years after the radiation.
Radiation-induced tumors are still fairly rare, but because of the increased risk (as well as the other side effects), radiation therapy is only given to the head after carefully weighing the possible benefits and risks. For most patients with cancer in or near the brain, the benefits of getting radiation therapy as part of their treatment far outweigh the small risk of developing a brain tumor years later.
The possible risk from fetal or childhood exposure to imaging tests that use radiation, such as x-rays or CT scans, is not known for sure. These tests use much lower levels of radiation than those used in radiation treatments, so if there is any increase in risk, it is likely to be very small. But to be safe, most doctors recommend that pregnant women and children not get these tests unless they are absolutely needed.
In rare cases (less than 5% of brain tumors), children have inherited abnormal genes from a parent that put them at increased risk for certain types of brain tumors. In other cases, these abnormal genes are not inherited but occur as a result of changes (mutations) in the gene before birth.
People with inherited tumor syndromes often have many tumors that start when they are young. Some of the more well-known syndromes include:
Neurofibromatosis type 1 (von Recklinghausen disease)
This is the most common syndrome linked to brain or spinal cord tumors. It is often inherited from a parent, but it can also start in some children whose parents don’t have it. Children with this syndrome may have optic gliomas or other gliomas of the brain or spinal cord, or neurofibromas (benign tumors of peripheral nerves). Changes in the NF1 gene cause this disorder.
Neurofibromatosis type 2
Less common than von Recklinghausen disease, this condition can also either be inherited or may start in children without a family history. It is associated with cranial or spinal nerve schwannomas, especially vestibular schwannomas (acoustic neuromas), which almost always occur on both sides of the head. It is also linked to an increased risk of meningiomas, as well as spinal cord gliomas or ependymomas. Changes in the NF2 gene are responsible for neurofibromatosis type 2.
Tuberous sclerosis
Children with this condition may develop subependymal giant cell astrocytomas (SEGAs), as well as other benign tumors of the brain, skin, heart, kidneys, or other organs. This condition is caused by changes in either the TSC1 or the TSC2 gene.
Von Hippel-Lindau disease
Children with this disease tend to develop blood vessel tumors (hemangioblastomas) of the cerebellum, spinal cord, or retina, as well as tumors in the kidney, pancreas, and some other parts of the body. It is caused by changes in the VHL gene.
Li-Fraumeni syndrome
People with this syndrome have an increased risk of gliomas, as well as breast cancer, soft tissue sarcomas, leukemia, adrenal gland cancer, and some other types of cancer. It is caused by changes in the TP53 gene.
Other syndromes
Other inherited conditions linked with increased risks of certain types of brain and spinal cord tumors include:
Some families may have genetic disorders that are not well recognized or that could even be unique to a particular family.
Cell phones give off radiofrequency (RF) rays, a form of electromagnetic energy on the spectrum between FM radio waves and those used in microwave ovens, radar, and satellite stations. Cell phones do not give off ionizing radiation, the type that can cause cancer by damaging the DNA inside cells. Still, there have been concerns that the phones, whose antennae are built-in and therefore are placed close to the head when being used, might somehow raise the risk of brain tumors.
Some studies have suggested a possible increased risk of brain tumors or of vestibular schwannomas in adults with cell phone use, but most of the larger studies done so far have not found an increased risk, either overall or among specific types of tumors. Still, there are very few studies of long-term use (10 years or more), and cell phones haven’t been around long enough to determine the possible risks of lifetime use. The same is true of any possible higher risks in children, who are increasingly using cell phones. Cell phone technology also continues to change, and it’s not clear how this might affect any risk.
These risks are being studied, but it will likely be many years before firm conclusions can be made. In the meantime, for people concerned about the possible risks, there are ways to lower their (and their children’s) exposure, such as using the speaker function or an earpiece to move the phone itself away from the head when used. For more information, see our document Cellular Phones.
Other factors
Exposure to aspartame (a sugar substitute), exposure to electromagnetic fields from power lines and transformers, and infection with certain viruses have been suggested as possible risk factors, but most researchers agree that there is no convincing evidence to link these factors to brain tumors. Research on these and other potential risk factors continues.
The cause of most brain and spinal cord tumors is not fully understood. But researchers have found some of the changes that occur in normal brain cells that may lead them to form tumors.
Normal human cells grow and function based mainly on the information contained in each cell’s chromosomes. Chromosomes are long strands of DNA in each cell. Brain and spinal cord tumors, like other tumors, are usually caused by changes (mutations) in the DNA inside cells. DNA is the chemical that makes up our genes – the instructions for how our cells function. We usually look like our parents because they are the source of our DNA. But DNA affects more than how we look.
Some genes control when our cells grow, divide into new cells, and die. Certain genes that help cells grow, divide, and stay alive are called oncogenes. Others that slow down cell division, or cause cells to die at the right time, are called tumor suppressor genes. Cancers can be caused by DNA changes that turn on oncogenes or turn off tumor suppressor genes. These gene changes can be inherited from a parent (as is sometimes the case with childhood cancers), but more often they happen spontaneously during a person’s lifetime.
In recent years, researchers have found the gene changes that cause some rare inherited syndromes (like neurofibromatosis, tuberous sclerosis, Li-Fraumeni syndrome, and von Hippel-Lindau syndrome) and increase the risk of developing some brain and spinal cord tumors. For example, the Li-Fraumeni syndrome is caused by changes in the TP53 tumor suppressor gene. Normally, this gene prevents cells with damaged DNA from growing. Changes in this gene increase the risk of developing brain tumors (particularly gliomas), as well as some other cancers.
In most cases, it is not known why people without inherited syndromes develop brain or spinal cord tumors. Most risk factors for cancer somehow damage genes. For example, tobacco smoke is a risk factor for lung cancer and several other cancers because it contains chemicals that can damage genes. The brain is relatively protected from tobacco smoke and other cancer-causing chemicals that we might breathe in or eat, so these factors are not likely to play a major role in these cancers.
Several different gene changes must usually occur in normal cells before they become cancerous. There are many kinds of brain tumors, each of which may have different sets of gene changes. A number of gene or chromosome changes have been found in different brain tumor types, but there are probably many others that have not yet been found.
Researchers now understand some of the gene changes that occur in different types of brain tumors, but it’s still not clear what causes these changes. Some gene changes might be inherited, but most brain and spinal cord tumors in children are not the result of known inherited syndromes. Most gene changes are probably just random events that sometimes happen inside a cell, without having an outside cause.
Other than radiation, there are no known lifestyle-related or environmental causes of childhood brain tumors, so it is important to remember that there is nothing these children or their parents could have done to prevent these cancers.
Screening is testing for a disease (such as brain or spinal cord tumors) in people without any symptoms. At this time there are no widely recommended screening tests for most children to look for brain or spinal cord tumors before they start to cause symptoms. These tumors usually are found as a result of signs or symptoms the child is having.
Most often, the outlook for people with brain or spinal cord tumors depends on the type of tumor and its location, not how early it is detected. But as with any disease, earlier detection and treatment is likely to be helpful.
For children with certain inherited syndromes that put them at higher risk for brain tumors, such as neurofibromatosis or tuberous sclerosis, doctors often recommend frequent physical exams and other tests. These tests might find tumors when they are still small. Not all tumors related to these syndromes may need to be treated right away, but finding them early might help doctors monitor them so that they can be treated quickly if they begin to grow or cause problems.
After treatment, the main concerns for most families are the short- and long-term effects of the tumor and its treatment, and concerns about the tumor still being present or coming back.
It’s certainly normal to want to put the tumor and its treatment behind you, and to get back to a life that doesn’t revolve around the tumor. But it’s important to realize that follow-up care is a central part of this process that offers your child the best chance for recovery and long-term survival.
In some cases, even with slow-growing tumors, some of the tumor may still remain after treatment. Even when childhood tumors are treated successfully, some might come back even many years later. (Your child’s doctor should be able to give you an idea of how likely this is.)
Imaging tests (CT or MRI scans), physical exams, and sometimes other tests will be done after treatment to help determine how successful it was. Whether the tumor was removed completely or not, your child’s health care team will want to watch your child closely, especially in the first few months and years after treatment to watch for tumor growth or recurrence. Depending on the type and location of the tumor and the extent of the treatment, the team will let you know which tests need to be done and how often.
During this time, report any new symptoms to your child’s doctor right away, so the cause can be determined and treated, if need be. Your child’s doctor can give you an idea of what to look for. If your child needs further treatment at some point, the doctor will go over the options with you.